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Typical Disposal Site – Design for 1000 yr 
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How do Radon Barriers Work? 
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• Radon transport primarily controlled by 
diffusion (high to low concentration) 
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Dair: 10-5 m2/s 
Dwater: 10-9 m2/s 
Dsolid: ~ 0 

Low diffusion coefficient and low flux 
when: 
• High dry unit weight (solids content) 
• High water saturation 
 
 



• Specimen compacted with 

standard Proctor energy 

(ASTM D 698) at w = 16% 

(1% dry of optimum) 

 

• Large interclod pores are 

still visible, but clay is visible 

softer and more remolding 

is apparent 

 

• K ~ 10-5 cm/s 
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Just Dry of Optimum 



• Specimen compacted with 

standard Proctor energy 

(ASTM D 698) at w = 20% 

(3% wet of optimum) 

 

• Only micro-scale pores exist.  

Clods fully remolded and 

interclod voids are eliminated. 

 

• K ~ 10-9 cm/s 
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Challenges – Predicting the Future 
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Dust 
Deposition 

Soil Formation (desiccation 
cracking, freeze-thaw) 

Vegetative 
Succession 

Bio-turbation 

How will these barriers 
change over centuries? 
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• Does pedogenesis soil cause 
changes in radon diffusion 
coefficient and flux? 
 

• Does pedogenesis cause 
changes in hydraulic 
properties and percolation? 
 

• Can we design barriers that 
are resilient in a natural 
system? 

http://www.clker.com/clipart-2525.html


Pedogenesis in Barrier Layers 
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Contrasting Climates for Field Sites 

Falls City, TX 

Shirley Basin South, WY Lakeview, OR 

Bluewater, NM 



Measuring Radon Flux - Surface 
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1. Expose Radon Barrier 

2. Install & Seal Flux Chamber 

3. Measure Radon Buildup 



Flux Chamber: Small to Large 
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Typical Radon Buildup Curve 

Mass Balance 
 

 
Where: 

C(t) = concentration (Bq/m3) at time = t (s) 

Ci = initial Rn conc. in chamber (Bq/m3) 

Jo = the initial Rn Flux rate (Bq/m2s) 

A = area of surface (m2) 

V = the volume of the chamber (m3) 

𝝀 = the decay constant (s-1) 

D = the back diffusion rate (s-1) 

Mass Balance 

Calculating Radon Flux – RAD7 Data 

Methodology accounts for back diffusion from mass build up. 

𝑪(𝒕) = 𝑪𝒊 −
𝑱𝒐𝑨

𝑽 𝝀 + 𝑫
𝒆− 𝝀+𝑫 𝒕 +

𝑱𝒐𝑨

𝑽 𝝀 + 𝑫
 

Equation: Chao et. al. (1997) 



Surface Feature 



Installation of Flux Chambers 

Test Duration: 5 – 20 hours 



Falls City – Vegetation & Scale Effects 



Results – Riprap Slope vs Top Deck 

Falls City, TX 



Results – Riprap Slope vs Top Deck 

Falls City, TX 

Riprap ‘mulch’ retains water -- increasing water saturation. 



Results – Seasonal Ponding 



Impact of Water Saturation from Seasonal Ponding 

Higher water saturation – lower Rn flux 
Nearly all fluxes below regulatory limit 
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Deep Rooted Vegetation 



Results – Deep Rooting Vegetation 

Bluewater, NM 
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Higher water saturation – lower Rn flux 
Macrostructure contribute? 



• Show water content profiles 

Ant Mound at Bluewater, NM 



Approximate Limits of Ant Tunnels 



• Show water content profiles 

Fluxes at Ant Mound 

Bluewater, NM 
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Ant mound yields lower water saturation -- passive venting.  
Macrostructure contribute? 



Fluxes at Shirley Basin South 

• Very low Rn 
flux at site. 
 

• High flux from 
tailings. 
 

• Rn barrier is 
performing 
very well. 



•Fluxes below regulatory requirement, but 
higher than as-built (4-10x).  What is long-
term condition? 

 

•Fluxes higher below features that contribute 
to lower water saturation (ant mound, salt 
bush). Can we control long term? 

 

•No apparent scale effect – similar fluxes with 
large-scale and smaller flux chambers. 

 

Lessons Learned 


